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Abstract

The goal of this paper is to expand upon the development of an emittance echange
beamline as developed in Cornacchia and Emma [1]. In particular, to clarify what types
of beamlines are needed before and after a deflecting mode cavity to effect a perfect
emittance exchange. General properties of the transfer matricies of these beamlines are
listed and some specific cases are shown. The hope is that this will aid those designing
such beamlines.

1 Introduction

A scheme to exchange the longitudinal emittance with one of the transverse emittances was
proposed by Cornacchia and Emma in 2002 [1]. In this paper the authors show many of the
properties of a beamline to generate such an exchange. Furthermore, a beamline is proposed
based on a chicane with a deflecting mode cavity in the dispersive region. Such a beamline
does not exchange the emittances without coupling between the two planes. A subsequent
paper by Emma, et. al. shows the design of a beamline based on two identical doglegs with a
deflecting mode cavity after the first dogleg [2]. This beamline will exchange the emittances
without residual coupling.

It has been proposed to perform such an experiment at the A0 photinjector prior to it
moving to NML. This will be the topic of Tim Koeth’s thesis. In the design of a beamline
for the experiment, it was decided that a standard chicane will not be used and some design
will be chosen to completely exchange the emittances without coupling. The purpose of this
paper is to expand upon the derivation of beamline properties in Ref. [1] and derive what are
the the necessary properties of the subsections of the beamline to effect such an exchange.

2 General Properties

The matrix of an emittance exchange beamline takes the form of

M = MacMcavMbc =

(
A B
C D

)
(1)
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where A,B,C,D are 2×2 blocks of the matrix, Mcav is the cavity matrix, and Mbc and Mac

symplectic matricies for the before cavity and after cavity sections ofthe beamline respec-
tively. It is assumed that there is no RF in either the before or after cavity sections of the
emittance exchange beamline. The requirement of symplecticity means that Mbc and Mac

have the form of

Mbc =


a b 0 η
c d 0 η′

cη − aη′ dη − bη′ 1 ξ
0 0 0 1

 (2)

Mac =


e f 0 D
g h 0 D′

gD − eD′ hD − fD′ 1 χ
0 0 0 1

 (3)

.
The cavity matrix takes the form

Mcav =


1 0 0 0
0 1 k 0
0 0 1 0
k 0 0 1

 (4)

as given in reference [1]. For completeness, we note that the phase space variables are
x, x′, z, δ which are the transverse position and angle, the distance from the bunch center
(z > 0 refers to the front of the bunch), and fractional momentum offset.

Using these matricies the matrix for the total emittance exchange is

M =


cf(1 + kη) + ae + ak(D − fη′) df(1 + kη) + be + bk(D − fη′)
ch(1 + kη) + ag + ak(D′ − hη′) dh(1 + kη) + bg + bk(D′ − hη′)[

c(hD − fD′) + a(gD − eD′ + kχ)
+(cη − aη′) [1 + k(hD − fD′)]

] [
d(hD − fD′) + b(gD − eD′ + kχ)

+(dη − bη′) [1 + k(hD − fD′)]

]
ak bk

fk D + eη + fη′ + k(Dη + fξ)
hk D′ + gη + hη′ + k(D′η + hξ)

1 + k(hD − fD′)

[
D(gη + hη′) + D′(eη + fη′)

+kξ(hD − fD′) + ξ + χ(1 + kη)

]
0 1 + kη

 =

(
A B
C D

)
(5)

This matrix automatically fulfills all of the relations outlined in Appendix A of Reference
[1] since it is a symplectic matrix. According to Equations 28 of Reference [1] read

ε2
x = |A|2ε2

x0 + (1− |A|)2ε2
z0 + λ2εx0εz0 (6)

ε2
z = (1− |A|)2ε2

x0 + |A|2ε2
z0 + λ2εx0εz0 (7)

(8)

where εx,z are the transverse and longitudinal emittances after the exchange, and εx0,z0 are
the emittances prior. These equations state that detA = |A| = 0 is required for emittance
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exchange. The λ2εx0εz0 term is not explicitly written out, but in the text below Equations
28 the authors state that “λ2 = 0 if and only if all Aij = 0 or the trivial case of no coupling
at all, where all Bij = Cij = 0.” It is clear from Equation 5 that in the case where the cavity
is off, k = 0, there is no coupling of the emittances. However, it is not clear that if Aij = 0
then λ2 = 0.

From Equations 19 of Reference [1]

λ2εx0εz0 = trace
{
(AσxA

T )aBσzB
T
}

= trace
{
(CσxC

T )aDσzD
T
}

(9)

where σx,z is the sigma matrix for the transverse and longitudinal phase space prior to the
exchange , XT denotes the matrix transpose and Xa denote the adjoint matrix. When
written in terms of the A and B blocks of the M matrix this term becomes

λ2εx0εz0 = (A21B11 −A11B21)
2σ2

xσ
2
z + (A21B12 −A11B22)

2σ2
xσ

2
z′

+(A22B11 −A12B21)
2σ2

x′σ2
z + (A22B12 −A12B22)

2σ2
x′σ2

z′

+2(A21B11 −A11B21)(A21B12 −A11B22)σ
2
xσzz′

+2(A22B11 −A12B21)(A22B12 −A12B22)σ
2
x′σzz′

+2(A21B11 −A11B21)(A22B11 −A12B21)σxx′σ2
z

+2(A21B12 −A11B22)(A22B12 −A12B22)σxx′σ2
z′

+4 [(A21B12 −A11B22)(A22B11 −A12B21)

(A21B11 −A11B21)(A22B12 −A12B22)] σxx′σzz′ (10)

where it is clear that if all of Aij = 0 then λ2 = 0. One can surmise from the form that if
the above equation were written in terms of the C and D blocks of M then this term would
be zero if Dij = 0. We will note at this point that the chicane designed in Reference [1] has
only the σ2

x′σ2
z′ term.

λ2εx0εz0 = 4η2σ2
x′σ2

z′ (11)

3 SubBeamline Properties

Now that some of the general properties of the emittance exchange matrix have been fleshed
out and the assumptions stated we want to answer the following question,“What is needed
of the elements of Mbc, Mcav, Mac, to effect a perfect emittance exchange?”

There are four equations, one for each element of the A block. At first glance there are
12 unknowns (a, b, c, d, e, f, g, h, k, η, η′, D, D’) However, the first 4 are related by the
symplectic condition. This is true for the second 4 elements as well. This leaves 10 free
parameters. One can solve the system of equations Aij = 0, and arrive at the following
relations between the free parameters:

k = −1

η
(12a)

D = eη + fη′ (12b)
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D′ = gη + hη′ (12c)

Plugging these into the matrix for the emittance exchange, one gets

M =


0 0 −f

η
eη + fη′ − f ξ

η

0 0 −h
η

gη + hη′ − h ξ
η

cη − aη′ − aχ
η

dη − bη′ − bχ
η

0 0

−a
η

− b
η

0 0

 . (13)

and the equation for the after cavity matrix becomes

Mac =


D−fη′

η
f 0 D

D′

η
+ η′

D
+ f D′η′

Dη
fD′+η

D
0 D′

−η′ η 1 χ
0 0 0 1

 . (14)

Now we will note the following interesting points of the solution. Firstly, it is general
involving only the properties of the cavity, symplectic transport lines without RF, and perfect
emittance exchange. The second is that the solution of the cavity strength is only determined
by the dispersion in the cavity. It is not obvious that it should not depend on other things,
such as the slope of the dispersion through the cavity. Thirdly, the requirements of the
after cavity transport only depend on the dispersion and its slope in the cavity. It does not
depend on the other elements of the transport matrix prior to the cavity. Fourth there are
no requirements for the elements of Mbc other than it generate the required η, η′.

4 Consequences of the solution

At first glance this result looks like it may be nothing more than an existance proof, i.e. so-
lutions exist. However, the form of the matrix for after the beamline places some restrictions
on the types of beamlines to be used. For example, the chicane type solution is particularly
attractive for its simplicity. However, for any beamline that will return the incoming disper-
sion and its slope to zero with the cavity off, like the chicane, perfect emittance exchange
cannot occur. To zero the dispersion and slope without the cavity, assuming no dispersion
prior to the beamline, the following conditions must be met:

D = − (eη + fη′)

D′ = − (gη + hη′)

These differ from Equations 12 by a negative sign, so the only solution is if η = η′ = 0. This
also requires an infinite strength deflecting mode cavity.

Most of the designs with which we are familar are based on a dogleg which generates
dispersion with zero slope prior to the cavity.

Mbc =


1 L 0 η
0 1 0 0
0 η 1 ξ
0 0 0 1

 . (15)
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Pursuing this design leads to three types of solutions. The first is a beamline after the cavity
which generates further dispersion without slope.

Mac =


D
η

f 0 D

0 η
D

0 0
0 η 1 χ
0 0 0 1

 . (16)

Setting D = η and f = L gives the solution that is proposed in Reference [2]. That is, a
double dogleg with a deflecting cavity between the doglegs.

Another solution is to have a beamline which generates zero dispersion but with a slope.

Mac =


0 −η

D′ 0 0
D′

η
h 0 D′

0 η 1 χ
0 0 0 1

 . (17)

A beamline composed of a drift-quad-drift-dipole can satisfy the requirements of this matrix
if the focal length of the quad is equal to the length of the following drift. This solution is
similar to the design that Helen has arrived at [3].

Other beamline designs are also possible which are a composition of the two beamlines
where neither the dispersion or its slope are zeroed as some point.

5 Conclusion

The design requirements of a transverse to longitudinal emittance exchange beamline have
been expanded from the initial description given in Reference [1]. Using only the assumptions
of symplecticity and no accelerating RF we have been able to show the properties needed
for the beamlines before and after the deflecting mode cavity. The beamline prior to the
cavity only has to generate the desired dispersion at the cavity. The cavity strength has
to be matched to the generated dispersion. The beamline after the cavity needs to satisfy
Equations 12 to effect a perfect emittance exchange.

If the beamline prior to the cavity generates dispersion with no slope, three types of
solutions appear for after the cavity. The first is a solution which generates further dispersion
with no slope, such as the dogleg proposed by Reference [2]. The second causes the dispersion
to go through zero at some point, such as the solution proposed by Reference [3]. The last
is an admixture of the two.

A final consequence is that standard chicane type solutions will not produce a perfect
emittance exchange.

This paper does not take into account second order type effects. These need to be
investigated for any proposed solution for the A0 experiment. However, it simplifies the
process of making the first pass in desiging a beamline for A0.

References

[1] M. Cornacchia and P.Emma. Phys. Rev. ST Accel. Beams 5, 084001 (2002).

5



[2] P. Emma, Z. Huang, K.-J. Kim,and P. Piot. Phys. Rev. ST Accel. Beams 9, 100702
(2006).

[3] Helen Edwards. Private Communication.

6


